Regulation of repressible acid phosphatase gene transcription in Saccharomyces cerevisiae.

نویسندگان

  • J M Lemire
  • T Willcocks
  • H O Halvorson
  • K A Bostian
چکیده

We examined the genetic system responsible for transcriptional regulation of repressible acid phosphatase (APase; orthophosphoric-monoester phosphohydrolase [acid optimum, EC 3.1.3.2]) in Saccharomyces cerevisiae at the molecular level by analysis of previously isolated and genetically well-defined regulatory gene mutants known to affect APase expression. These mutants identify numerous positive- (PHO4, PHO2, PHO81) and negative-acting (PHO80, PHO85) regulatory loci dispersed throughout the yeast genome. We showed that the interplay of these positive and negative regulatory genes occurs before or during APase gene transcription and that their functions are all indispensible for normal regulation of mRNA synthesis. Biochemical evidence suggests that the regulatory gene products they encode are expressed constitutively. More detailed investigation of APase synthesis is a conditional PHO80(Ts) mutant indicated that neither PHO4 nor any other protein factor necessary for APase mRNA synthesis is transcriptionally regulated by PHO80. Moreover, in the absence of PHO80, the corepressor, presumed to be a metabolite of Pi, did not inhibit their function in the transcriptional activation of APase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of repressible acid phosphatase by unsaturated fatty acid in Saccharomyces cerevisiae.

We studied the induction of acid phosphatase (APase) by fatty acids in Saccharomyces cerevisiae. S. cerevisiae has two types of APase: constitutive and repressible enzymes. The synthesis of the latter APase is normally derepressed by depletion of inorganic phosphate (Pi) in the incubation medium. Of the saturated and unsaturated fatty acids tested, linoleic, linolenic and arachidonic acids indu...

متن کامل

Structure and function of the PHO82-pho4 locus controlling the synthesis of repressible acid phosphatase of Saccharomyces cerevisiae.

pho4 mutants of Saccharomyces cerevisiae, although rare among phosphatase-negative mutants isolated from wild-type strains, were isolated efficiently from pho80, pho85, or pho80 pho85 strains. The distribution of these pho4 mutants over the pho4 locus was determined by analyzing random spores of two- and three-factor crosses. The pho4-4 mutation confers temperature-sensitive synthesis of repres...

متن کامل

Regulation of repressible acid phosphatase by cyclic AMP in Saccharomyces cerevisiae.

One of the cyr 1 mutants (cyr 1-2) in yeast produced low levels of adenylate cyclase and cyclic AMP at 25 degrees and was unable to derepress acid phosphatase. Addition of cyclic AMP to the cyr1-2 cultures elevated the level of repressible acid phosphatase activity. The bcy1 mutation, which suppresses the cyr1-2 mutation by allowing activity of a cyclic AMP-independent protein kinase, also allo...

متن کامل

Heterologous protein secretion directed by a repressible acid phosphatase system of Kluyveromyces lactis: characterization of upstream region-activating sequences in the KIPHO5 gene.

Transcription of the repressible acid phosphatase gene (KIPHO5) in Kluyveromyces lactis is strongly regulated in response to the level of inorganic phosphate (Pi) present in the growth medium. We have begun a study of the promoter region of this gene in order to identify sequences involved in the phosphate control of KIPHO5 expression and to design new expression-secretion systems in K. lactis....

متن کامل

Isolation and characterization of a thiamin pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae.

The thi80 mutant of Saccharomyces cerevisiae (Nishimura, H., Kawasaki, Y., Nosaka, K., Kaneko, Y., and Iwashima, A. (1991) J. Bacteriol. 173, 2716-2719) shows markedly reduced activity of thiamin pyrophosphokinase (TPK; EC 2.7.6.2). We have isolated a DNA fragment carrying the THI80 gene from a yeast genomic library by its ability to complement constitutive synthesis of the thiamin-repressible ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 5 8  شماره 

صفحات  -

تاریخ انتشار 1985